Expressive Equivalence of Least and Inflationary Fixed-Point Logic
نویسنده
چکیده
We study the relationship between least and inflationary fixed-point logic. By results of Gurevich and Shelah from 1986, it has been known that on finite structures both logics have the same expressive power. On infinite structures however, the question whether there is a formula in IFP not equivalent to any LFP-formula was still open. In this paper, we settle the question by showing that both logics are equally expressive on arbitrary structures. The proof will also establish the strictness of the nesting-depth hierarchy for IFP on some infinite structures. Finally, we show that the alternation hierarchy for IFP collapses to the first level on all structures, i.e. the complement of an inflationary fixed-point is an inflationary fixed-point itself.
منابع مشابه
A logic with temporally accessible iteration
Deficiency in expressive power of the first-order logic has led to developing its numerous extensions by fixed point operators, such as Least Fixed-Point (LFP), inflationary fixed-point (IFP), partial fixed-point (PFP), etc. These logics have been extensively studied in finite model theory, database theory, descriptive complexity. In this paper we introduce unifying framework, the logic with it...
متن کاملFixed-Point Logics on Planar Graphs
We study the expressive power of inflationary fixed-point logic IFP and inflationary fixed-point logic with counting IFP+C on planar graphs. We prove the following results: (1) IFP captures polynomial time on 3-connected planar graphs, and IFP+C captures polynomial time on arbitrary planar graphs. (2) Planar graphs can be characterized up to isomorphism in a logic with finitely many variables a...
متن کاملThe Expressive Power of Two-Variable Least Fixed-Point Logics
The present paper gives a classification of the expressive power of two-variable least fixed-point logics. The main results are: 1. The two-variable fragment of monadic least fixed-point logic with parameters is as expressive as full monadic least fixed-point logic (on binary structures). 2. The two-variable fragment of monadic least fixed-point logic without parameters is as expressive as the ...
متن کاملFixed point logics
We consider fixed point logics, i.e., extensions of first order predicate logic with operators defining fixed points. A number of such operators, generalizing inductive definitions, have been studied in the context of finite model theory, including nondeterministic and alternating operators. We review results established in finite model theory, and also consider the expressive power of the resu...
متن کاملA Note on the Relation between Inflationary Fixpoints and Least Fixpoints of Higher Order
Least fixpoints of monotone functions are an important concept in computer science which can be generalised to inflationary fixpoints of arbitrary functions. This raises questions after the expressive power of these two concepts, in particular whether the latter can be expressed as the former in certain circumstances. We show that the inflationary fixpoint of an arbitrary function on a lattice ...
متن کامل